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ABSTRACT 
 

In modern safety-related application domains, the shift from unicore to multicore processors is becoming inevitable 

to keep pace with the growing importance of computational capacity and to satisfy the functional consolidation 

trend while decreasing energy consumption and thermal hotspots. Nevertheless, typical multicore processors are 

mostly intended to enhance the system performance, whereas safety-critical systems (SCS) have very different 

demands in terms of safety, reliability, quality of service, predictability and timing correctness. Hence, the move 

towards multicore processors imposes many significant challenges the computing industry has to tackle. These 

challenges are involved in designing of certifiable multicore architectures, the organization of common resources 

and assimilation of concurrent software. Hence, these are encountered at all phases of the specification, design, 

development, testing, and certification processes. Hence, both multicore industrialists and the real-time community 

have to fill the gap to meet the requirements enforced by SCS. The objective of this paper is to initiate such a 

discussion as an effort to fill the gap between the two domains and to substantially increase the cognizance of the 

obstacles and issues that need to be handled in the safety-critical domain. 
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I. INTRODUCTION 

 

A system is considered as being safety-critical whose 

failure might endanger human life or create significant 

impairment to property/environment. Almost all the 

safety-critical applications are mixed-criticality (MC) 

systems which co-host multiple applications with 

different degrees of criticality (i.e., importance) into a 

shared hardware platform. Inevitably, such a high 

integration trend has been witnessed in numerous 

industrial sectors (e.g., automotive, medical, aerospace, 

nuclear power station, etc.). The functional 

consolidation and radically increased computing 

demands are key enablers to driving chip manufacturers 

towards multicore architectures in SCS. A good 

example of MC system is the Unmanned Aerial 

Vehicles (UAV), commonly called as pilotless airplanes 

or drones [1]. The pilotless airplane is a remotely 

controlled aerial vehicle and finding novel applications 

in military operations, traffic surveillance, wilderness 

search and rescue, precision agriculture, fire control and 

many others. It will have warfare and reconnaissance 

facilities surpassing those of presently used manned 

aircraft.  

 

Based on a market survey from an independent business 

information provider for military application, the global 

aviation electronics market for appropriate safety 

products in 2009 reaches US$ 5.1 billion. Over the 

projected period of 2010 - 2020, the cumulative drone 

markets will almost US$ 71 billion [2]. Expected profits 

over the epoch of 2010 - 2015 are projected to be nearly 

US$ 62 billion with estimated US$ 5.5 billion expended 

worldwide in 2010 alone [3, 4]. In Australia, civilian 

usage of drones has been encouraging with AUS 2 

million went to field surveys where 90% of 500000 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  346 

hectares crop monitoring is covered by pilotless aircraft 

[5].  

 

With the rising demand across a wide range of 

applications, drones with varying dimensions and 

capabilities have been designed based on the application 

demand and with economic consideration. Due to the 

cost and performance benefits of MC system in 

microelectronics industries, the arena of general-

purpose and embedded computing shows an 

extraordinary trend towards multicore architectures. 

Currently, multicore processors are becoming an 

unavoidable choice in SCS [6] as exemplified by the 

current and ongoing projects, such as Quest-V [7], 

Framework Programme (FP7) funded parMERASA [8], 

CERTAINTY [9], P-SOCRATES [10] projects and 

ARTEMIS funded EMC
2 
[11] project.  

 

Drone assimilates tasks (i.e., workloads) of varying 

degrees of rigorousness and performs them onto a 

common embedded system. The computational 

workloads of UAV can be categorized into three 

classes:  

1. Safety-oriented workloads: High-level workloads 

that perform safety relevant activities of the vehicle, 

such as flight cruise control and trajectory planning 

to maintain the stability of the vehicle, dropping 

which a UAV cannot be operated safely. The 

malfunctions of these workloads can lead 

catastrophic effects for the vehicle, and therefore 

must be performed with the maximum level of 

guarantee.  

2. Mission-oriented workloads: Low-level workloads, 

which are concerned with reconnaissance missions 

such as localization of targets, direction-finding 

operations and parking assistance, dropping which 

the vehicle is still deemed secure. Failure (i.e., 

timing overruns) on these workloads leads slight 

service interruption in the system that is not fatal.  

3. Non-critical workloads: Workloads that perform the 

least significant background functions, and they do 

not affect the safety of the drone. An example would 

be determining an optimal route through an area 

under unfriendly radar surveillance. 

 

Criticality is the level of necessary fortification against 

the malfunction of computational subsystems. It is 

measured in terms of safety metrics such as DAL 

(Design Assurance Levels) or SIL (Safety Integrity 

Levels) in the avionics industry and ASIL (Automotive 

Safety Integrity Levels) in the automotive industry. 

These SILs reveal the necessary level of risk reduction 

in scheming safety relevant applications and hence 

involve various steps of designing, implementing, 

testing, and certification processes. For instance, in 

aviation standard DO-I78B, there are five DALs, 

categorized by their degree of threatening produced by 

the failure of the workload: catastrophic; hazardous; 

major; minor; no effect [12]. Workload with higher 

DAL designates that a greater risk reduction is required 

for the functional and timing correctness of the chip’s 

operation. For example, in the control system of a UAV 

executing surveillance task, it is more important to 

validate the correctness of safety-oriented 

functionalities such that the aircraft does not crash, than 

for mission-oriented functions like capturing and 

transferring photos. 

 

During the engineering of a SCS, the risks are detected, 

their rigorousness is investigated, and suitable hazard 

control techniques are implemented to decrease 

jeopardy to an acceptable level. Traditionally, safety-

critical functionalities have to be validated based on 

their confidence levels by different Certification 

Authorities (CA) (e.g., Federal Aviation Authority 

(FAA) in US and the European Aviation Safety Agency 

(EASA) in Europe for airborne systems [13]. 

Certification is an industrial practice for ensuring the 

correctness of the critical components against stringent 

safety standards. In order to perform risk analysis, 

different standards are available in the avionics system. 

ARP 4754 [14] defines system level certification 

features of aggressively consolidated or sophisticated 

systems implemented in airplanes. ARP 4754 considers 

the entire environment it will operate in and assorted 

levels of criticality. This standard dictates 

hardware/software design methodologies and timing 

analysis tools for airborne systems. DO-254 [15] defines 

electronic hardware certification imperatives. A 

complete description of the guidelines for software 

developers can be found in DO-178B [16].  

 

In order to guarantee system safety, CA dictates far 

more pessimistic assumptions regarding the execution 

of the system, which are very unlikely to befall in 

practice – their sole concern is with the correctness of 

the safety-related component of the vehicle. It is not 

important for them whether the mission-oriented tasks 

are executed in time or not. On the other hand, the 

complete system, including non-critical components, 
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must be validated by the system engineers or other 

regulatory organizations, who usually exploit a less 

severe safety standard than the one dictated by aviation 

authorities [17].  

 

Modern real-time applications have rigorous timing and 

safety requirements, and the adoption of multicore 

processors raises even greater challenges. We outline 

two major reasons. First, the functional consolidation 

ensuing undue interferences across parallel tasks in the 

integrated platform [18] that may lead to malfunctions 

of the system and persuade impulsive overloads, which 

reveal further latencies perhaps, violates the real-time 

constraints of the workloads. Second, multicore 

processors with commercial off-the-shelf (COTS) 

subsystems are designed to enhance the average system 

performance and not the worst-case execution behavior. 

This presents various uncertainties and makes the 

common cause failure analysis of such systems highly 

problematic, otherwise impractical. Standard multicore 

processors remain very attractive for use since they are 

reasonably priced. Excessively limiting such systems to 

perform in the worst case will increase determinism 

substantially, but there is a simultaneous restriction of 

the potential advantage.  

 

The progression of embedded field is increasing from 

“federated” to “integrated” and “partitioned” 

architectures. In traditional federated architectures, each 

core or processing element (PE) executes at most one 

task, and the applications are loosely related [19]. As 

more and more workloads are executed concurrently 

using SCS, the number of such PEs increased (e.g., 

modern premium vehicles comprise over 70 -100 PEs), 

alongside with their cost, the number of physical 

components (e.g., wires and connectors) and SWaP 

(size, weight and power) concerns. A method to 

decrease the SWaP of the system is realizing the system 

by means of an integrated platform, by consolidating 

more and more tasks onto the same core [20].  

 

In order to enable strict isolation between tasks of 

different criticality levels, embedded system architects 

are relying on partitioned architectures, which deliver 

partitioning tools at the platform level. Separation 

(Partitioning) is the fundamental notion to circumvent 

any interference among diverse applications in space 

and time. It delivers risk containment equivalent to a 

flawless system in which each partition is assigned to a 

predefined core and concomitant I/O devices, and each 

inter-partition interaction is carried on dedicated lines 

[21]. Compared to the integrated architecture, the 

partitioned architecture provides sufficient isolation 

among workloads of different SILs, thus the workloads 

can be generated and certified based on their initial SIL, 

decreasing the costs. Isolation can be achieved in ways: 

spatial and temporal. The temporal isolation ensures that 

a task scheduled to common resources cannot be 

affected by an application in another partition [21]. 

Spatial isolation ensures that an application in a 

partition will not interfere with the code and data of 

another partition [21]. However, the effect of functional 

integration in multicore platforms is not completely 

investigated yet [22]. 

 

The major objective of our work is not to give a 

complete description of safety-critical or multicore 

systems, but rather desire to investigate the integration 

scenario of them.  In this paper, we address new safety 

relevant challenges exist for critical domains when 

considering the adoption of multicore systems, with a 

focus on aerospace systems.  First, in Section II, we 

review some examples of commercial multicore 

architectures, the openings, and the issues threw down 

by multicore processors in the aerospace industries, 

where diverse functionalities can benefit from the 

functional consolidation on an integrated platform. We 

present SYSGO’s PikeOS [23] and eSOL’s eMCOS 

with their application, specific demands including 

certification, performance and possible methods of 

consolidation in Section III. Next, we demonstrate how 

the challenges ensuing from multicore systems can be 

handled in software by regulating the characteristics of a 

Real-Time Operating System (RTOS). In Section IV, 

we present a representative multicore architecture, 

Kalray MPPA-256 Bostan processor [24], which is 

widely used in the avionics system. We address the 

design, employment, and programming models have 

been intended to execute MC applications. Section V 

provides a comprehensive study of an ongoing P-

SOCRATES project. Finally, we conclude this paper in 

Section VI. 

 

II. METHODS AND MATERIAL 

 

1. Analyzing Multicores In SCS 

In this section, we first present some examples of 

commercial multicore architectures for SCS and then 

identify challenges along with new opportunities 
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regarding the safety of the system. From a technical 

perspective, multicore processors can deliver two 

valuable benefits in the context of safety-related 

applications: (i) achieve higher processor/ resource 

utilization, and (ii) provide performance guarantees to 

highly critical tasks without degrading the performance 

of other non-critical tasks. However, the current 

industrial practice for the exploitation of multicore 

architectures is inadequate and is still being examined, 

since numerous crucial problems have to be solved. 

A. Examples of Multicore architectures for Safety-

critical Systems 

Current critical domains integrate tens of computing 

cores to achieve secure and efficient control systems. A 

number of research projects like EMC
2
, CERTAINTY 

and P-SOCRATES use multicore processors for 

executing safety-critical applications. The FP7 funding 

project parMERASA (Multi-Core Execution of 

Parallelized Hard Real-Time Applications Supporting 

Analysability) [8] explores different parallelization 

techniques, OS virtualization and competent 

synchronization techniques for safety-related 

environments and fabricating a timing analysable 

multicore platform with up to 64 cores [25]. In 

parMERASA, the common resources are allotted in 

favour of Hard Real-Time (HRT) applications over Soft 

Real-Time (SRT) applications [8]. Even though SRT 

tasks can miss the deadlines occasionally, the system is 

deemed safe but with degraded performance guarantees. 

In HRT systems, missing a deadline of the tasks can 

cause failure of the system. An HRT application has its 

own dedicated cache and is assigned maximum priority 

when accessing system resources. When executing SRT 

in a multicore environment, the maximum access time 

of HRT task to common resources is limited. Nowotsch 

et al. assessed the performance of multicore processors 

in an aerospace domain and explained the possible 

interferences to execution from parallel workloads or 

simultaneous access to common hardware resources 

[26]. They exploit a spatial isolation technique for the 

cache and main memory and temporal isolation for the 

communication bus. However, these methods cannot 

separate on-chip traffic without incurring considerable 

overheads.  

 

Several safety-relevant issues can be solved by the 

emerging multicore designs. This is because, in a 

multicore platform, a number of safety features (e.g., 

resource redundancy, partitioning, etc.,) can be applied 

instinctively. All multicore chip vendors are aware of 

this. They are promoting their devices with dedicated 

architectures ensuring the demands of safety standards. 

For example, Freescale and Intel provide software as 

well as hardware products for safety-critical systems. 

Similarly, Wind River [27] delivers multicore software 

solution, which includes their support for concurrent 

programming, virtualization, software hypervisor, 

VxWorks Cert and Workbench.  

 

MPC564xL, a dual-core embedded system introduced 

by Freescale, is primarily designed for automobiles. 

Recently, it can also be applied in safety-related 

applications in avionics systems. It comprises of several 

safety-related properties. MPC564xL is targeted 

towards IEC 61508 international industrial standard 

specifies four SILs for the safety of electric, electronic 

and programmable electronic (E/E/PE) [28] instruments 

and devices. It targets to define a set of measures for 

fault avoidance and failure protection for the 

certification process. An obvious example is in-built 

Error Correction Codes (ECC). MPC564xL contains 

two PowerPC cores and enable either lockstep mode or 

asymmetric processing mode. The former mode enables 

the widespread use of hardware redundancy, while the 

later operating mode makes the software diversity 

conceivable. It is obvious that this processor along with 

its inherent safety-related functions is an exciting 

architecture. Nevertheless, a comprehensive 

investigation is required to tap the full potential of this 

architecture in the avionics systems.  

 

Blackfin, a dual-core processor introduced by Analog 

Devices, is widely used in real-time communication 

technologies. Since this architecture is not explicitly 

promoting the processor for SCS, it is not emphasized 

on common cause failures. The cores of this architecture 

are homogeneous and share the same computing 

platform except for the level 1cache (L1). While it is 

possible to use various OS’s on each core, from a safety 

perspective, the diversity is not present. Malfunction of 

certain components (e.g., power supply, memory 

management unit, communication bus, etc.,) make both 

cores unable to execute tasks. This is susceptible to the 

single point of failures. An important feature of this 

architecture is the ability of one core to monitor or 

validate the correctness of the other core. This could be 

done by executing the same workload on both cores and 

one core compares the results and identifies the fault of 

another core at appropriate instances of its execution. 
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Furthermore, one core is dedicated to run memory 

testing procedures or other self-diagnostic programs. In 

critical domains, which involve higher performance, this 

architecture would be inspiring to assess. If complex 

and time-consuming diagnostics like online memory 

diagnostic could be offloaded, this architecture is most 

appropriated time-critical applications.  

 

At present, the Kalray MPPA-256 Bostan processor is 

well adapted to aviation electronics. The increasing 

trend towards certified aircraft functionalities executed 

on MPPA-256 (Multi-Purpose Processor Array -256) 

architecture relies on spatial isolation technique that 

may be implemented over hundreds of PEs. In this 

architecture, the CC (compute cluster) provides a 

natural boundary to evade non-intended interactions 

across tasks at various confidence levels. This processor 

also facilitates dynamic barrier synchronizations 

between PEs, whether located within the same cluster or 

between various clusters. We will explain this 

architecture in more detail later in section IV. 

B. Opportunities 

Functional integration in aviation industries (e.g., 

Integrated Modular Avionics (IMA) specifications [29], 

and the growing requirements for additional 

computational capacity are opening new possibilities for 

innovative research works on multicore systems. As 

spacecraft platforms are responsible for different 

activities such as direction-finding, stability control, 

data communications, air traffic control, passenger 

entertainment, etc., their computational complexity 

remains increasing. Hence, multicore processors can be 

utilized to focus several independent tasks on an 

integrated platform or to execute tasks demanding for 

maximum computational efficiency. Indeed, a 

combination of scenarios is also feasible.  

1) Hosting various functionalities within an integrated  

platform: 

Integrating several tasks onto a single, secure computing 

platform allow us to map each task to a predefined core. 

The valuable benefits of functional integration are as 

follows: (i) Power consumption and heat dissipation 

limitations are driving manufacturers towards multicore 

devices. The power consumption of a single multicore 

platform is usually lower than that of multiple unicore 

solutions. In a multicore platform, only one power 

supply unit is efficient enough to fulfil the requirements 

of the system’s power budget as compared to multiple 

power supply units for multiple unicore systems; (ii) 

lower power density directly leads to lower cooling 

requirements, which is a salient feature of the aerospace 

system; (iii) decreasing the number of PEs, supply units 

and cooling equipment evidently reduces the SWaP 

requirements of the system architecture; and (iv) this, in 

line, leads to a reduced amount of fuel ingestion (i.e. 

less fuel has to be lifted at flight take-off), and 

eventually leads to significant economic gains. 

2) Ever-growing Demand for Computing Performance:   

Performance is the motivating force behind computing 

technologies. Tasks with increasing computational 

necessities can benefit from multicore technologies by 

dividing a complicated application into independent 

tasks being performed concurrently on various cores. 

These performance demands could only be realized by 

highly sophisticated unicore processors with increasing 

demands on power supply and cooling. Regrettably, 

these sophisticated unicore processors do not fulfil the 

DO-254 specification [30] and hence cannot be used. 

System engineers select the preferred design alternative, 

a single-chip multicore containing a higher number of 

less sophisticated cores, to provide such performance. 

This entails extra effort to build parallelization 

techniques, compilers and analysis tools for safety-

critical applications. Multicore processors can deliver 

their superior performance only if an appropriate 

parallelization is performed.  

3) Supporting time-predictability:  

Time constraints and parameters associated with the 

data processing phases (i.e., acquisition, computation, 

forwarding, buffering, synchronization and delivery) are 

used to specify the time-critical tasks. The major 

potentials anticipated from a multicore system for time-

critical computing and stated by the safety standards are 

determinism, predictability and composability of the 

performed computations. The graceful degradation of 

timing features and maximum utilization of computing 

resources are deemed other quality metrics for such 

systems. In multicore environments, interactions among 

tasks avert the system to be composable, predictable or 

even deterministic. The timing predictability cannot be 

guaranteed whenever cores contend to access common 

hardware means, e.g., system buses, global clocks, 

shared RAM and I/O peripherals. Owing to resource 

sharing, the task assigned to one core can interfere with 

the task executing on other core, albeit both tasks are 

autonomous. The inter-core interference can cause not 

only execution delay but can also make execution 

behavior less deterministic. Examples of interference 
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channels include (i) peripherals, L2 caches and internal 

buses shared between cores (see Figure 1); (ii) Direct 

Memory Access (DMA) controller may interrupt the 

communication buses asynchronously; (iii) L1 caches 

may need to be preserved in a steady state by means of 

cache coherency protocol, (i.e., although L1 caches 

belong to different cores, they are not autonomous); and 

(iv) pipelines are shared between cores for hyper 

threading processors.  

 

Figure 1 shows a quad-core architecture analogous to 

NXP QorIQ T2080 [31] architecture which is 

commonly used in avionics systems. In this 

configuration, each PE has its own pipeline and L1 

cache (L1$). It also consists of shared on-chip L2 

caches (L2$). Though the cores have the multi-

threading capability, most of the aerospace systems do 

not utilize this facility. Therefore, an application 

assigned to a core has private access to L1$. The 

common resources are L2$, Memory Controller (MC) 

and NoC. Common resources are accessible by all the 

cores and fine-grain hardware techniques such as 

placement, fetch and replacement policies of cache 

memories, define in what way they are accessed. Even 

though such techniques work sound in practice, they are 

extremely unpredictable and do not assure required 

system behavior for safety-related applications. 

 

 
Figure 1: Interference Channels in Multicore Platform 

 

Recent multicore processors pose several issues that 

have to be tackled in advance. Most of them are related 

with highly consolidated system-on-chips (SoC) that 

comprise many I/O devices. Many certification methods 

and processes exploit only a small portion of these 

resources. Hence, how can we ensure that idle resources 

do not interrupt the system (e.g., “babbling idiot” 

failure)? How can we ensure that idle PEs do not have 

any action on the buses? Furthermore, some 

performance enhancing techniques (e.g., speculations, 

caching policies, memory pre-fetching techniques and 

so on) cause non-deterministic characteristics of system 

behavior. In an SCS this can cause may cause tasks to 

violate their timing constraints resulting in malfunction 

of the system and in the worst-case behavior the 

potential loss of human lives or equipment. The major 

problem of using multicore architectures in SCS is 

ensuring the timing correctness of the system. If the 

hardware and software are extremely constrained to 

impose the worst-case execution behavior, then it makes 

the application less efficient on the multicore platform 

than on the unicore processor. 

 

 
Figure 2 : Multicore architecture with cache coherent 

memory. 

 

Important issues in multicore processors are memory 

hierarchies, coherency and latencies. The memory 

hierarchy of a traditional multicore system with a 

common memory and cache-based architecture is shown 

in Figure 2. A series of caches are traversed before 

accessing the common DDR memory. Even though the 

L1caches are completely owned by their corresponding 

cores, their data is often unpredictable and so is their 

timing behavior. Hence, the concurrent access of the 

cores to the same resources can cause unanticipated 

interferences. The key benefit of traditional multicore 

systems is the potential to run workstation and server 

software with a minute or no changes/advances.  

 

An example memory hierarchy of a multicore system 

appropriate for time-critical embedded systems (e.g., 

Digital Signal Processors (DSP)) is given in Figure 3. In 

this configuration, the first level of the hierarchy 

consists of private SRAM with cache lockdown 

features. A Large amount of data transfers is delegated 

to DMA controllers, whose computational time can be 

constrained more precisely than general-purpose PEs. 

Interference arises in the components of the 

interconnection network and the DDR memory 

controller that are accessed by multiple applications. 

Such systems need significant reconfiguration to 
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accommodate the bounded storage capacity of local 

memories and the usage of DMA controllers.  

 

 
Figure 3: Multicore architecture with local memories 

C. Challenges 

As stated in the preceding section, non-intended 

interactions onto a common platform can have a strong 

influence on predictability and the dictated composable 

behaviour of safety-oriented applications. At present, 

both EASA [32] and FAA [33] enable SCS developers 

to use a dual-core processor for performing a single 

application. Clearly, this restricts the potential 

advantage of multicore processors. To fill this gap, lots 

of expertise is essential to have a complete knowledge 

about all the timing behaviours of platforms to make 

them appropriate for critical domains. This effort should 

be shared among the hardware manufacturers, the tool 

vendors and the application designers. In this section, 

we discuss the major challenges that should be tackled 

at the hardware as well as software level. 

1) Architectural properties of the of Cores:  

A significant dispute that is frequently ignored in the 

context of the multicore environment is the architectural 

properties of each core. As safety-oriented components 

strive to satisfy the most stringent constraints, the 

processors used must deliver a temporally deterministic 

behaviour. This implies that cores exhibiting timing 

anomalies, dynamic branch prediction, or sophisticated 

caching policies make WCET analysis more complex. 

Therefore, cores fabricated with such features do not 

build a desirable foundation for multicore platforms in 

the aerospace system. However, multicore processor 

containing cores with lower complexity as compared to 

general purpose high-performance computing are 

classified as highly sophisticated COTS devices [32]. In 

most cases, this classification makes certification 

process incredible regarding cost and time.  

 

2)  Interconnection Network (Int.Net): 

In a multicore system, several PEs are connected using 

interconnection network such as TTEthernet protocol 

[34]. The Int.Net must also be responsible for 

guaranteeing predictable system behaviour.  Moreover, 

facilitating higher bandwidth and lower execution delay 

are not efficient enough as far as no assurances on the 

correctness of the safety-critical part can be given. The 

specified assurances need to reflect the actual execution 

behaviour as precisely as possible. Excessive assurances 

will lead to higher overheads, which in turn adversely 

affect the performance of the multicore systems.  

3)  Fault management model: 

The functional safety of the system demands several 

methods for enhancing reliability or at least to identify 

the timing overruns. Existing multicore processors are 

already fortified with ECC techniques to access an 

external RAM, Flash and internal memories; however, 

most of them are inappropriate for future avionics 

systems because their complexity leads to further risks. 

As multicore processors are designed to satisfy as many 

use cases as possible, they have several configuration 

registers. Error in a single configuration bit, ensuing 

from a Single Event Upset (SEU), may strongly affect 

the behaviour of the application. For instance, if the 

configuration of the access policy to the Int.Net varies, 

the timing properties of all tasks executing on the 

platform will be affected since the Int.Net is not 

operating correctly any longer. The timing overruns 

cannot be determined by WCET analysis. In unicore 

systems, faults can be detected by various redundant 

subsystems with compare stages before the results leave 

the system. Since unicore processors execute 

applications serially and in the same sequence on 

redundant components, comparing the result is quite 

easy to realize. However, the multicore processor can 

yield diverse results based on the possible interleaving 

of concurrent workloads. An appropriate compare unit 

is required to manage these results accordingly, which 

increases the system complexity. 

4) I/O Devices: 

Generally, I/O devices can be accessed by any active 

component within the system. This access can be 

intentional or occur inadvertently, for example, because 

of misbehaviour of a low-criticality task or a Single 

Event Upset in the Int.Net. Therefore, procedures for 

protecting I/O peripherals from inadvertent access and 

techniques are required for controlling/ synchronizing 

the envisioned accesses.  
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5)  Programming tools: 

Current programming models are not adequately 

flexible, reliable and scalable to be capable of tackling 

the growing size and heterogeneity of the multicore 

platform.  Development of new programming models 

for critical unicore processors already needs special 

cognizance and practical experience. Besides this 

knowledge, designing critical concurrent software 

requires additional knowledge about what happens in a 

multicore system and what can happen inadvertently. 

Particularly, synchronization of workloads, the location 

of code and data, updating data and the utilization of I/O 

peripherals needs extra effort. In the average case, 

violating timing guarantees may yield inefficient 

systems; but in the worst case, it can also cause 

catastrophic consequences. Recently, appropriate 

synchronization mechanisms have been predominantly 

studied (e.g., parMERASA project [8]). Special care has 

to be taken when the multicore processor dealing with 

special micro coded routines. These routines can be 

complex instructions or I/O activities that execute 

expedient functions such as testing a subsystem in an 

efficient way, which would otherwise be impossible to 

test.  

6)  Software analysis 

Running several workloads from the same or diverse 

application simultaneously raises a new query that is not 

answered by conventional software testing tools: what 

happens in parallel? Although running various partitions 

needs strict isolation, applications need to access 

peripherals frequently. If these peripherals are shared by 

several applications, it must be assured that no 

malfunction happens when a peripheral is locked by 

another application. Perhaps more importantly, in the 

case of concurrent execution, it must be assured that no 

race conditions can happen and that induced 

synchronization operates correctly. Furthermore, 

synchronization overhead and waiting times need to be 

considered during the WCET analysis. 

 

2. Certified RTOS for Safety-Critical Embedded 

Platform  

a. Necessity of certified RTOS in a safety-critical 

domain 

Due to the familiarization of multicore 

hardware/software designs and new techniques such as 

virtualization and partitioning, the embedded system 

designers have more design-freedom in fabricating their 

systems. Since several safety-critical applications also 

use an embedded RTOS, it has become inevitable that 

critical subsystems with an RTOS are being designed to 

follow safety standards. The RTOS schedules the tasks 

of software as well as the functionalities of safety 

monitors and safety functions. The real-time software 

developers already provide certified RTOS (e.g., 

INTEGRITY-178B RTOS, VxWork Cert, or 

SCIOPTA's RTOS) that are initially certified to the 

industrial safety standard DO-178B. Since then, it is 

routinely re-certified to IEC 61508 on several 

compiler/processor combinations. The key benefits of 

using a certified RTOS are as follows: (i) it will reduce 

risk, cost and time-to-market of safety-critical products; 

(ii) it will provide a safety guidebook, which gives 

guidance on in what way to use the OS efficiently to 

ensure safety; and (iii) it will deliver some remarkable 

methods like memory protection that will make it 

simple to embed safety features into application. 

b. Pike OS 

Isolation is a significant requirement for safety-related 

applications, especially as we assimilate several tasks 

with diverse criticalities in a common platform, we 

would like to separate them according to their 

importance levels. In a multicore platform, this isolation 

is really difficult to realize since the hardware 

components are not sovereign. An imperative notion 

required to simplify the design and certification is a 

severe and vigorous partitioning, i.e. a set of principles 

applied to hardware/software resources which thwart 

interactions among tasks, exactly as if each task 

executes on its own virtual resources with assured 

performances whatever the execution of other tasks. 

Hence, we need the support of the OS to provide 

architects sufficient flexibility to the system 

configuration whilst coercing the architecture to enable 

the certification process. PikeOS is ARINC-653 

compatible OS; it delivers complete partitioning in both 

time and space for several tasks executing with various 

importance levels. 

i. Key Principles of PikeOS: 

In a multicore platform, an efficient scheduling 

algorithm is required to implement not only to exploit 

software budgets effectively but also to reduce the 

interferences among concurrent application. These 

challenges are the key enabler to SYSGOs engineers to 

develop PikeOS [23]. The PikeOS is a new and 

prominent para-virtualization RTOS based on 

partitioning microkernel architecture for forthcoming 

avionics systems. As stated earlier, the progression of 
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embedded system from federated to integrated 

architectures has led to environments where several 

tasks with different confidence levels share a common 

processing element (PE) or node. In order to circumvent 

any unintended interferences among these tasks the 

system needs to facilitate strict partition.  

 

ARINC-653 [35] is a well-known example of 

partitioned communication model dictating firm 

isolation in the context of safety applications. The 

ARINC-653 defines the baseline-operating environment 

with strong time and space separations.  It imposes time 

and space constraints statically before execution of each 

partition. Each separation is a distinct application with a 

devoted memory region, thus providing spatial 

separation. With time separations, each task is allowed 

to execute only within specified time budget or partition 

slices, assigned to each core. An additional OS layer 

named Virtual Machine Monitor (VMM) or hypervisor 

guarantees the partitioning among various separations. 

VMM is a software layer (or a mixture of 

hardware/software) that enables different OS’s to run on 

the same processor as shown in Figure 4. The function 

of the VMM is to virtualize the existing system 

resources effectively. Furthermore, the VMM has to be 

certified at the highest SIL.  

 

 
Figure 4: ARINC-653 Partitioned environment 

 

PikeOS provides Many Independent Levels of Security 

(MILS) to embedded avionics systems, and its 

separations allow the safe and secure integration of 

large range of personalities of the market [23],  

including guest OS, Run-Time Environments (RTE), 

APIs, Native, Linux, ARINC-653, POSIX, Android, 

real-time Java, and others as shown in Figure 5.   

 
Figure 5: Architecture of PikeOS 

 

The hypervisor model of this RTOS incorporates guests 

within a virtual machine (VM) with their dedicated 

memory region, computing resources and application 

set. Programs integrated on one VM perform absolutely 

independent of those in other machines. PikeOS has the 

facility to distinct code both spatially and temporally so 

system engineers have the capability to control not only 

where the code is stored but also when it executes. 

PikeOS and its associated software form a thin layer of 

the trusted code that virtualizes the critical components 

of the application to generate several isolated 

separations. The VMM is responsible for handling the 

physical resources of systems, and implement the spatial 

and temporal partitioning of the guests. Direct access to 

the native hardware is not endorsed. 

ii. Hardware support for PikeOS: 

Many OS, particularly those in avionics systems, still 

does not directly impose any partitioning techniques due 

to its excessively slow software emulation. In such 

cases, it is possible to program hardware devices to 

implement the required partitioning. For example, the 

OS enables Memory Management Units (MMUs) to 

provide access to a specified memory region, and the 

hardware is responsible for implementing that. Else, an 

exception is upraised and the operating system regains 

control. Reasonable exploitation of hardware support 

for partitioning is definitely most efficient with respect 

to performance and deterministic execution. 

Regrettably, most of the recent hardware does not 

support that. A prime example of hardware support is 

the evolving Input–Output Memory Management Unit 

(IOMMU) [36] implemented to DMA-capable I/O 

devices. Another example of limited support is 

virtualized PCI (Peripheral Component Interconnect) 

drivers [37] providing spatial isolation, however by 

exploiting the same PCI bus, there still exists 

interference impacts on the remaining parts of the 

system.  
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In Graphics Processing Units (GPU), we are still at the 

beginning since current hardware has no facility to 

reduce the processing time of shaders for, in order to 

partition rendering time in the GPU. Finally, access to 

peripherals can be virtualized by virtualizing software 

drivers. They provide flexible configuration and 

separation potentials, and for various devices, they are 

sufficiently fast. PikeOS exploits this method frequently 

for Ethernet devices. If hardware partitioning support 

does not exist, one approach may be to evade 

dependency by exploiting other partitioning resources, 

e.g., if direct bus bandwidth isolation does not exist, 

then the tasks may be isolated temporally so that no 

interaction can befall. It is essential for an OS to deliver 

the flexibility of the configuration for arranging a 

system in the way the designer realizes fit. 

iii. PikeOS Separation Kernel for Multicore 

platforms  

PikeOS is a separation micro-kernel that supports 

spatial and temporal isolation, where each separation in 

the system can be statically allocated to space and time 

constraints, ensured by the OS at run-time. Spatial 

isolation includes memory and peripheral access. This is 

applied by means of the existing MMUs of the cores. 

PikeOS delivers fine-grained memory management 

usage for the separations in the platform. PikeOS 

derives the concept of temporal isolation from ARINC 

653 separation standards. A dedicated hardware 

switches the control back to the OS at defined 

synchronization points so that the OS can execute the 

separation.  

 

During a separation process, executing functions 

achieve exclusive access to the common means. This 

needs all the synchronized cores to have a similar 

perception of time or synchronization with a dedicated 

protocol in case of asynchronous modes. In addition to 

the temporal isolation, this supports fine-grained control 

about what partition runs on which core at what time. 

This makes it feasible to reason about partitioning, even 

in a multicore environment.  

 

For full control of the utilization of the processor, 

PikeOS provides a flexible methodology to the user who 

can choose an execution model ranging from 

asymmetric multi-processing to symmetric multi-

processing [23].  The Asymmetric Multi-Processing 

(AMP) model is analogous to multiple unicore 

environments. There is a strong tendency for more 

interference channels among cores owing to the tight 

coupling of the cores. In this model, various cores or set 

of cores operated by various instances of an RTOS, 

possibly even different processors. It is also possible 

that the RTOS’s could also be different resulting in 

partitioning being disseminated across various RTOSes. 

In this model, execution is absolutely asynchronous 

since each RTOS has distinct virtual address spaces so 

the MMU synchronization is not required. Memory 

spaces are only shared for dedicated regions for core 

interaction. 

 

In a Symmetric Multi-Processing (SMP) model, a single 

OS controls all cores and partitioning process. The cores 

are tightly coupled via resource locks and 

synchronization mechanisms. The RTOS with SMP 

design needs to certify that there are no interference 

channels among partitions due to cross resource locking 

techniques. This idea is new for certification. Critical 

components of the time frame can perform in 

uniprocessor mode. In contrast to AMP, symmetric 

multi-processing model needs MMU synchronization, 

which will have some albeit a small hit on performance. 

An illustration of a resource and temporal separation in 

PikeOS is given in Figure 6. Time partitions Tp_1, Tp_2 

and Tp_3, are scheduled to repeat at regular intervals. 

Resources partitions 1, 2, 3 and 4 are mapped to 

temporal separations and then cores are assigned to 

resource partitions. The lower picture demonstrates 

when and on which cores the partition will then be 

assigned. This way, partitioning can be realized via 

flexible configuration. This mode provides a simple, 

integrated platform where a single application can use 

multiple cores.  

 

 
Figure 6 : Example of partitioning in PikeOS 
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Along with partitioning, the RTOS should provide an 

opportunity to refresh caches and other data structures 

(e.g., Translation Lookaside Buffer (TLBs)), at every 

time partition shifts. While this is typically extravagant, 

it will make software performing after refresh more 

predictably. In order to deal with DMA accesses that 

might interrupt the system, IOMMUs are now available. 

PikeOS provides support for these facilities to ensure 

partitioning of such devices, too. 

 

In this study, we have also explored the techniques to 

alleviate partitioning complications. These include 

exploiting hardware support to bound bus utilization for 

some partitions, so as to make some assurances for other 

cores. The techniques are auspicious, though actual 

control of bus utilization time in hardware would be the 

decisive way to recover control of partitioning a bus. In 

order to certify, a safety-critical application, all the 

existing approaches are valuable. Only a cautious 

system design, including considerations about safety-

critical guarantees, can be realized in the way the 

system needs it. This is made conceivable by flexible 

configuration joined with the implementation of the 

most recent hardware/software innovations for dealing 

the increased risk of interference. 

c. eMCOS for a safety-critical environment 

 

The eMCOS is the first viable manycore real-time OS 

for safety-critical platforms from eSOL in 2015. In an 

embedded market, eSOL is recognized as the leading 

vendor for RTOS, development tools and 

basic/application middleware.  The noteworthy product 

of eSOL is the eT-Kernel RTOS, which is certified ISO 

26262 and IEC 61508 at the maximum SIL. In contrast 

to any existing RTOS architecture, eMCOS can make 

the efficient utilization of manycore processor with tens 

or hundreds of different cores since it does not rely on 

any cache coherency protocol required by most 

currently available RTOSes. 

 

eMCOS employs distributed micro-kernel architecture 

that is diverse from currently used RTOSes. The 

microkernel is fortified with only minimal utilities and 

is really compact, which enables it to run the MPPA I/O 

clusters as well as CCs. A micro-kernel is implemented 

in each core to provide fundamental services (e.g., inter-

core communication, thread scheduling, thread 

migration, etc.,) (see Figure 7). The eMCOS for MPPA 

architectures also supports OpenMP 3.0 (Open Multi-

Processing version 3). eSOL's semi-priority-based 

scheduling algorithm provides timeliness guarantees for 

safety-critical applications, which is always expected in 

embedded systems along with the superior throughput 

and scalability anticipated from multicore architectures. 

eMCOS allows the application developers to follow  

existing development styles since it implements the 

same programming frameworks and Application 

Programming Interfaces (API) like widely used RTOSes 

for unicore /multicore systems. 

 

The eMCOS’s scheduling algorithm exploits two 

different schedulers that work simultaneously. One 

scheduler satisfies the real-time guarantees by assigning 

higher priority threads to each core. These scheduled 

threads are always serviced first in order to for 

guarantee the timing constraints. Another scheduler 

allocates the remaining lower priority threads across all 

the cores based on their priorities. Obviously, this load 

distribution ability enables higher throughput. 

 

 
Figure 7 : eMCOS real-time thread management 

 

III. RESULTS AND DISCUSSION 

 

1. Example Multicore Architecture for Safety-Critical 

Domain 

A. The Kalray MPPA-256 Bostan processor 

The foundation of Kalray’s supercomputing on a single-

chip relies on its innovation, patented MPPA manycore 

architecture. This revolutionary architecture 

allows multiple cores to operate in parallel at high 

performance, low power and extremely low latency. It 

assimilates 288 homogeneous 32-bit/64-bit Very Long 
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Instruction Word (VLIW) computing nodes and 128 

crypto co-processors on a die. More specifically, it 

consists of 256 application cores (or PEs), used to 

execute the user threads and 32 resource managers 

(RMs), and privileged to execute kernel routines. The 

computing nodes are disseminated across sixteen 

compute clusters and four I/O clusters. Each compute 

cluster comprises of 17 cores (i.e., 16 PEs + 1 RM). In 

addition to this, there are four quad-core I/O clusters, 

each having 4 RMs. The I/O clusters are in charge for 

communications with external devices, which act as 

controllers for the computing nodes. Each resource 

managers: (i) uses an RTEMS (Real-Time Executive for 

Multiprocessor Systems) OS; (ii) is provided with a 

common 512 KB 16-banked SDRAM; (iii) has its 

privileged 32 KB I-cache; and (iv) shares a 128 KB D-

cache, which assures coherency among the 

computing nodes. The functions of RM include task 

management, communication control and data transfers 

between both external connectors (PCIe Gen3 8-lane 

interfaces) and SDRAM. For this purpose, resource 

managers have dedicated links to NoC interfaces. The 

Kalray MPPA-256 Bostan architecture is depicted in 

Figure 8.  

 
Figure 8 : Kalray MPPA-256 Bostan processor 

Architecture overview 

 

The Kalray processor works between 400 MHz and 800 

MHz and typically consumes 25W. Its maximum 

floating-point performances at 600 MHz are 634 

GFLOPS / 316 GFLOPS for single/double precision 

correspondingly. Two memory controllers at 2133 MT/s 

deliver an external memory bandwidth of 34 Gbps. This 

memory hierarchy is energy-efficient and thwarts inter-

cluster interferences, except for the explicit data 

transferring via NoC. The system also uses 2 PCIe 

connectors, 8 Ethernet 10 Gbps interfaces and direct 

access to the NoC in order to reduce processing delay. 

Applications developed for this architecture commence 

their execution on the I/O subsystems; consequently, it 

denies computation to the CCs through the network-on-

chip interfaces. Communication with peripherals is 

achieved through several interfaces like PCIe connector 

and DDR3 channels.  

B. Kalray software development Environments 

 

The Kalray programming environment is composed of 

two parts, one dedicated to multicore programming and 

the other to manycore programming. On the I/O 

subsystems, the memory is directly accessible by the 

cluster cores; however, on the compute cluster, direct 

memory access by the cores must be emulated by a run-

time system. One more fundamental dichotomy is that 

data caches are not coherent in the CCs, whereas each 

core within the I/O subsystems shares them. The 

multicore programming model consists of modern 

GCC/G++ compilers with OpenMP support, 

multithreaded GNU debugger and an optional Eclipse 

C/C++ Development Tools. A single process model 

with POSIX threads and timers is provided for each CC, 

limited to one thread per processing core. On the I/O 

subsystems, a Linux OS with dynamic loading and 

shared libraries are available, running on one of the 

quad-core CPUs. In the CC, the utilization of the 

OpenMP and P-Threads ensure that caches are coherent 

at synchronization points.   

 

The manycore software development environments 

explore the features of the programming model in the 

context of the MPPA-256 processor. A Low-Level 

programming environment is provided to realize the 

maximum performances or determinism of the safety-

critical applications. It also supports OS, RTEs and 

middleware from 3
rd

 party software developers. The 

Low-Level programming (LLP) environment virtualizes 

event and trap managing for simpler use by guest OS. 

Virtualization is applied by an exo-kernel type of 

hypervisor, where computing resources are managed 

and protected but are neither scheduled for use nor 

abstracted in an OS-specific way [38]. An overview of 

the LLP environment is given in Figure 9. 

 
Figure 9 : The Kalray LLP environment 
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The LLP also delivers the nitty-gritty of a Software 

Distributed Shared Memory (S-DSM) system. This S-

DSM provides shared memory abstractions for clusters. 

It enables the MMU of each core to achieve direct 

accessing of the external DDR memory, effectively 

transferring the content of the private memory of each 

CC into a last-level cache. The other manycore 

programming environments such as a POSIX-Level 

environment and an OpenCL environment utilize this.  

 

Of late, the MPPA-256 processor is implemented in 

aviation-embedded systems. This requires that the entire 

system and application be certified according to the DO-

178 avionic standard and the DO-245 airborne 

electronic hardware standard. Because of its clustered 

architecture, the MPPA-256 also effectively satisfies the 

imperatives of partitioning. The extensive roadmap 

towards certified spacecraft applications executing on 

this processor is based on embedding PikeOS on the I/O 

subsystems to support the Kalray-supplied Linux, and 

on realizing spacecraft certification for core elements of 

the Low-Level programming environment.  

C. An Example Ongoing Research Project 

FP7 ongoing project P-SOCRATES (Parallel Software 

framework for Time-critical Manycore Systems) [39] is 

combining the essential expertise from High-

performance computing (HPC) and Embedded 

Computing (EC) platforms to cooperatively mitigate the 

complications of enabling timeliness assurances to 

applications with an increasing demand for computing 

performance. Thus, P-SOCRATES will allow the 

implementation of manycore architecture either in HPC 

or in EC systems. The main objective of P-SOCRATES 

is to execute OpenMP 4 applications on I/O clusters 

with offloading to the CCs, thus exporting a simple 

interface for real-time programming of the MPPA 

architectures.  

 
Figure 10: P-SOCRATES integrating approach 

 

To handle the predictability issues, this integrating 

approach provides a comprehensive software solution, 

able to fill the gap between application design and 

physical environment by implementing efficient parallel 

programming model. The concurrent software stack 

integrates bin-packing techniques with scheduling 

algorithms in order to achieve parallelization of tasks. 

This concurrent software framework is being extended 

for the use in safety-critical embedded platform. Figure 

10 illustrates the software stack implemented in P-

SOCRATES. It deduces a Task Dependency Graph 

(TDG) from the user application and allocates each task 

to the OS’s threads statically; then these threads are 

dynamically scheduled on targeted manycore 

architecture [39].  

 

Improved concurrent software solutions are being 

examined, integrating innovative principles and 

compiler technologies to build an extended TDG 

comprising the data dependencies between tasks and 

related information to address the influence of shared 

resources on real-time behavior of the system. Bin 

packing and task scheduling tools to choose an 

appropriate core mapping techniques then utilize this 

statistics. The bin-packing technique statically forms the 

efficient run-time configuration, effectively allocates 

tasks to OS’s threads to provide timeliness guarantees 

without compromising the system performance. Then, 

the task scheduling tool interprets the task-to-thread 

allocation strategy into an effective thread-to-core 

mapping algorithm. 

 

II. CONCLUSION 

 
In modern embedded platforms, multicore processors 

have developed towards worldwide safety-critical 

applications. In this work, we explained some of the 

major issues which will decelerate our progress towards 

multicores from unicore in the context of the critical 

aerospace system. In summary, it is not enough for the 

aviation system to have a better understanding of 

concepts related to multicore processors; it is also 

essential for the system manufacturers and tool vendors 

to gain knowledge about critical functionalities and their 

requirements for multicore processors. Therefore, many 

significant efforts are presently under way or have been 

made in a series of research projects. We highlight the 

experience of both SYSGO and Kalray, who contributed 

many of these projects, in providing complete hardware 

design solutions and efficient OS level software 
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solutions to make multicore core systems appropriate 

for safety-oriented applications. Several research efforts 

are still required to mitigate the problem of certification 

of SCS. So far, no complete value chain has been 

recognized in the aviation electronics for multicore 

processors. A large variety of research regarding this 

combined effort is still need to be addressed to adopt 

multicore architectures in safety-critical embedded 

systems. 
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