
IJSRSET162599 | Received : 17 October 2016 | Accepted : 25 October-2016 | September-October-2016 [(2)5: 345-359]

© 2016 IJSRSET | Volume 2 | Issue 5 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

345

An Irreversible Transition towards Multicore Platform in Safety-

Critical Domain for the Aviation Industries
Nagalakshmi K*1, Gomathi N2

*
1
Computer Science and Engineering, Hindusthan Institute of Technology, Coimbatore, Tamilnadu, India

2
Computer Science and Engineering, Vel Tech Dr.RR & Dr.SR Technical University, Chennai, Tamilnadu, India

ABSTRACT

In modern safety-related application domains, the shift from unicore to multicore processors is becoming inevitable

to keep pace with the growing importance of computational capacity and to satisfy the functional consolidation

trend while decreasing energy consumption and thermal hotspots. Nevertheless, typical multicore processors are

mostly intended to enhance the system performance, whereas safety-critical systems (SCS) have very different

demands in terms of safety, reliability, quality of service, predictability and timing correctness. Hence, the move

towards multicore processors imposes many significant challenges the computing industry has to tackle. These

challenges are involved in designing of certifiable multicore architectures, the organization of common resources

and assimilation of concurrent software. Hence, these are encountered at all phases of the specification, design,

development, testing, and certification processes. Hence, both multicore industrialists and the real-time community

have to fill the gap to meet the requirements enforced by SCS. The objective of this paper is to initiate such a

discussion as an effort to fill the gap between the two domains and to substantially increase the cognizance of the

obstacles and issues that need to be handled in the safety-critical domain.

Keywords: Avionics System, Mixed-Criticality, Multicore Processor, Safety-Critical

I. INTRODUCTION

A system is considered as being safety-critical whose

failure might endanger human life or create significant

impairment to property/environment. Almost all the

safety-critical applications are mixed-criticality (MC)

systems which co-host multiple applications with

different degrees of criticality (i.e., importance) into a

shared hardware platform. Inevitably, such a high

integration trend has been witnessed in numerous

industrial sectors (e.g., automotive, medical, aerospace,

nuclear power station, etc.). The functional

consolidation and radically increased computing

demands are key enablers to driving chip manufacturers

towards multicore architectures in SCS. A good

example of MC system is the Unmanned Aerial

Vehicles (UAV), commonly called as pilotless airplanes

or drones [1]. The pilotless airplane is a remotely

controlled aerial vehicle and finding novel applications

in military operations, traffic surveillance, wilderness

search and rescue, precision agriculture, fire control and

many others. It will have warfare and reconnaissance

facilities surpassing those of presently used manned

aircraft.

Based on a market survey from an independent business

information provider for military application, the global

aviation electronics market for appropriate safety

products in 2009 reaches US$ 5.1 billion. Over the

projected period of 2010 - 2020, the cumulative drone

markets will almost US$ 71 billion [2]. Expected profits

over the epoch of 2010 - 2015 are projected to be nearly

US$ 62 billion with estimated US$ 5.5 billion expended

worldwide in 2010 alone [3, 4]. In Australia, civilian

usage of drones has been encouraging with AUS 2

million went to field surveys where 90% of 500000

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 346

hectares crop monitoring is covered by pilotless aircraft

[5].

With the rising demand across a wide range of

applications, drones with varying dimensions and

capabilities have been designed based on the application

demand and with economic consideration. Due to the

cost and performance benefits of MC system in

microelectronics industries, the arena of general-

purpose and embedded computing shows an

extraordinary trend towards multicore architectures.

Currently, multicore processors are becoming an

unavoidable choice in SCS [6] as exemplified by the

current and ongoing projects, such as Quest-V [7],

Framework Programme (FP7) funded parMERASA [8],

CERTAINTY [9], P-SOCRATES [10] projects and

ARTEMIS funded EMC
2
[11] project.

Drone assimilates tasks (i.e., workloads) of varying

degrees of rigorousness and performs them onto a

common embedded system. The computational

workloads of UAV can be categorized into three

classes:

1. Safety-oriented workloads: High-level workloads

that perform safety relevant activities of the vehicle,

such as flight cruise control and trajectory planning

to maintain the stability of the vehicle, dropping

which a UAV cannot be operated safely. The

malfunctions of these workloads can lead

catastrophic effects for the vehicle, and therefore

must be performed with the maximum level of

guarantee.

2. Mission-oriented workloads: Low-level workloads,

which are concerned with reconnaissance missions

such as localization of targets, direction-finding

operations and parking assistance, dropping which

the vehicle is still deemed secure. Failure (i.e.,

timing overruns) on these workloads leads slight

service interruption in the system that is not fatal.

3. Non-critical workloads: Workloads that perform the

least significant background functions, and they do

not affect the safety of the drone. An example would

be determining an optimal route through an area

under unfriendly radar surveillance.

Criticality is the level of necessary fortification against

the malfunction of computational subsystems. It is

measured in terms of safety metrics such as DAL

(Design Assurance Levels) or SIL (Safety Integrity

Levels) in the avionics industry and ASIL (Automotive

Safety Integrity Levels) in the automotive industry.

These SILs reveal the necessary level of risk reduction

in scheming safety relevant applications and hence

involve various steps of designing, implementing,

testing, and certification processes. For instance, in

aviation standard DO-I78B, there are five DALs,

categorized by their degree of threatening produced by

the failure of the workload: catastrophic; hazardous;

major; minor; no effect [12]. Workload with higher

DAL designates that a greater risk reduction is required

for the functional and timing correctness of the chip’s

operation. For example, in the control system of a UAV

executing surveillance task, it is more important to

validate the correctness of safety-oriented

functionalities such that the aircraft does not crash, than

for mission-oriented functions like capturing and

transferring photos.

During the engineering of a SCS, the risks are detected,

their rigorousness is investigated, and suitable hazard

control techniques are implemented to decrease

jeopardy to an acceptable level. Traditionally, safety-

critical functionalities have to be validated based on

their confidence levels by different Certification

Authorities (CA) (e.g., Federal Aviation Authority

(FAA) in US and the European Aviation Safety Agency

(EASA) in Europe for airborne systems [13].

Certification is an industrial practice for ensuring the

correctness of the critical components against stringent

safety standards. In order to perform risk analysis,

different standards are available in the avionics system.

ARP 4754 [14] defines system level certification

features of aggressively consolidated or sophisticated

systems implemented in airplanes. ARP 4754 considers

the entire environment it will operate in and assorted

levels of criticality. This standard dictates

hardware/software design methodologies and timing

analysis tools for airborne systems. DO-254 [15] defines

electronic hardware certification imperatives. A

complete description of the guidelines for software

developers can be found in DO-178B [16].

In order to guarantee system safety, CA dictates far

more pessimistic assumptions regarding the execution

of the system, which are very unlikely to befall in

practice – their sole concern is with the correctness of

the safety-related component of the vehicle. It is not

important for them whether the mission-oriented tasks

are executed in time or not. On the other hand, the

complete system, including non-critical components,

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 347

must be validated by the system engineers or other

regulatory organizations, who usually exploit a less

severe safety standard than the one dictated by aviation

authorities [17].

Modern real-time applications have rigorous timing and

safety requirements, and the adoption of multicore

processors raises even greater challenges. We outline

two major reasons. First, the functional consolidation

ensuing undue interferences across parallel tasks in the

integrated platform [18] that may lead to malfunctions

of the system and persuade impulsive overloads, which

reveal further latencies perhaps, violates the real-time

constraints of the workloads. Second, multicore

processors with commercial off-the-shelf (COTS)

subsystems are designed to enhance the average system

performance and not the worst-case execution behavior.

This presents various uncertainties and makes the

common cause failure analysis of such systems highly

problematic, otherwise impractical. Standard multicore

processors remain very attractive for use since they are

reasonably priced. Excessively limiting such systems to

perform in the worst case will increase determinism

substantially, but there is a simultaneous restriction of

the potential advantage.

The progression of embedded field is increasing from

“federated” to “integrated” and “partitioned”

architectures. In traditional federated architectures, each

core or processing element (PE) executes at most one

task, and the applications are loosely related [19]. As

more and more workloads are executed concurrently

using SCS, the number of such PEs increased (e.g.,

modern premium vehicles comprise over 70 -100 PEs),

alongside with their cost, the number of physical

components (e.g., wires and connectors) and SWaP

(size, weight and power) concerns. A method to

decrease the SWaP of the system is realizing the system

by means of an integrated platform, by consolidating

more and more tasks onto the same core [20].

In order to enable strict isolation between tasks of

different criticality levels, embedded system architects

are relying on partitioned architectures, which deliver

partitioning tools at the platform level. Separation

(Partitioning) is the fundamental notion to circumvent

any interference among diverse applications in space

and time. It delivers risk containment equivalent to a

flawless system in which each partition is assigned to a

predefined core and concomitant I/O devices, and each

inter-partition interaction is carried on dedicated lines

[21]. Compared to the integrated architecture, the

partitioned architecture provides sufficient isolation

among workloads of different SILs, thus the workloads

can be generated and certified based on their initial SIL,

decreasing the costs. Isolation can be achieved in ways:

spatial and temporal. The temporal isolation ensures that

a task scheduled to common resources cannot be

affected by an application in another partition [21].

Spatial isolation ensures that an application in a

partition will not interfere with the code and data of

another partition [21]. However, the effect of functional

integration in multicore platforms is not completely

investigated yet [22].

The major objective of our work is not to give a

complete description of safety-critical or multicore

systems, but rather desire to investigate the integration

scenario of them. In this paper, we address new safety

relevant challenges exist for critical domains when

considering the adoption of multicore systems, with a

focus on aerospace systems. First, in Section II, we

review some examples of commercial multicore

architectures, the openings, and the issues threw down

by multicore processors in the aerospace industries,

where diverse functionalities can benefit from the

functional consolidation on an integrated platform. We

present SYSGO’s PikeOS [23] and eSOL’s eMCOS

with their application, specific demands including

certification, performance and possible methods of

consolidation in Section III. Next, we demonstrate how

the challenges ensuing from multicore systems can be

handled in software by regulating the characteristics of a

Real-Time Operating System (RTOS). In Section IV,

we present a representative multicore architecture,

Kalray MPPA-256 Bostan processor [24], which is

widely used in the avionics system. We address the

design, employment, and programming models have

been intended to execute MC applications. Section V

provides a comprehensive study of an ongoing P-

SOCRATES project. Finally, we conclude this paper in

Section VI.

II. METHODS AND MATERIAL

1. Analyzing Multicores In SCS

In this section, we first present some examples of

commercial multicore architectures for SCS and then

identify challenges along with new opportunities

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 348

regarding the safety of the system. From a technical

perspective, multicore processors can deliver two

valuable benefits in the context of safety-related

applications: (i) achieve higher processor/ resource

utilization, and (ii) provide performance guarantees to

highly critical tasks without degrading the performance

of other non-critical tasks. However, the current

industrial practice for the exploitation of multicore

architectures is inadequate and is still being examined,

since numerous crucial problems have to be solved.

A. Examples of Multicore architectures for Safety-

critical Systems

Current critical domains integrate tens of computing

cores to achieve secure and efficient control systems. A

number of research projects like EMC
2
, CERTAINTY

and P-SOCRATES use multicore processors for

executing safety-critical applications. The FP7 funding

project parMERASA (Multi-Core Execution of

Parallelized Hard Real-Time Applications Supporting

Analysability) [8] explores different parallelization

techniques, OS virtualization and competent

synchronization techniques for safety-related

environments and fabricating a timing analysable

multicore platform with up to 64 cores [25]. In

parMERASA, the common resources are allotted in

favour of Hard Real-Time (HRT) applications over Soft

Real-Time (SRT) applications [8]. Even though SRT

tasks can miss the deadlines occasionally, the system is

deemed safe but with degraded performance guarantees.

In HRT systems, missing a deadline of the tasks can

cause failure of the system. An HRT application has its

own dedicated cache and is assigned maximum priority

when accessing system resources. When executing SRT

in a multicore environment, the maximum access time

of HRT task to common resources is limited. Nowotsch

et al. assessed the performance of multicore processors

in an aerospace domain and explained the possible

interferences to execution from parallel workloads or

simultaneous access to common hardware resources

[26]. They exploit a spatial isolation technique for the

cache and main memory and temporal isolation for the

communication bus. However, these methods cannot

separate on-chip traffic without incurring considerable

overheads.

Several safety-relevant issues can be solved by the

emerging multicore designs. This is because, in a

multicore platform, a number of safety features (e.g.,

resource redundancy, partitioning, etc.,) can be applied

instinctively. All multicore chip vendors are aware of

this. They are promoting their devices with dedicated

architectures ensuring the demands of safety standards.

For example, Freescale and Intel provide software as

well as hardware products for safety-critical systems.

Similarly, Wind River [27] delivers multicore software

solution, which includes their support for concurrent

programming, virtualization, software hypervisor,

VxWorks Cert and Workbench.

MPC564xL, a dual-core embedded system introduced

by Freescale, is primarily designed for automobiles.

Recently, it can also be applied in safety-related

applications in avionics systems. It comprises of several

safety-related properties. MPC564xL is targeted

towards IEC 61508 international industrial standard

specifies four SILs for the safety of electric, electronic

and programmable electronic (E/E/PE) [28] instruments

and devices. It targets to define a set of measures for

fault avoidance and failure protection for the

certification process. An obvious example is in-built

Error Correction Codes (ECC). MPC564xL contains

two PowerPC cores and enable either lockstep mode or

asymmetric processing mode. The former mode enables

the widespread use of hardware redundancy, while the

later operating mode makes the software diversity

conceivable. It is obvious that this processor along with

its inherent safety-related functions is an exciting

architecture. Nevertheless, a comprehensive

investigation is required to tap the full potential of this

architecture in the avionics systems.

Blackfin, a dual-core processor introduced by Analog

Devices, is widely used in real-time communication

technologies. Since this architecture is not explicitly

promoting the processor for SCS, it is not emphasized

on common cause failures. The cores of this architecture

are homogeneous and share the same computing

platform except for the level 1cache (L1). While it is

possible to use various OS’s on each core, from a safety

perspective, the diversity is not present. Malfunction of

certain components (e.g., power supply, memory

management unit, communication bus, etc.,) make both

cores unable to execute tasks. This is susceptible to the

single point of failures. An important feature of this

architecture is the ability of one core to monitor or

validate the correctness of the other core. This could be

done by executing the same workload on both cores and

one core compares the results and identifies the fault of

another core at appropriate instances of its execution.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 349

Furthermore, one core is dedicated to run memory

testing procedures or other self-diagnostic programs. In

critical domains, which involve higher performance, this

architecture would be inspiring to assess. If complex

and time-consuming diagnostics like online memory

diagnostic could be offloaded, this architecture is most

appropriated time-critical applications.

At present, the Kalray MPPA-256 Bostan processor is

well adapted to aviation electronics. The increasing

trend towards certified aircraft functionalities executed

on MPPA-256 (Multi-Purpose Processor Array -256)

architecture relies on spatial isolation technique that

may be implemented over hundreds of PEs. In this

architecture, the CC (compute cluster) provides a

natural boundary to evade non-intended interactions

across tasks at various confidence levels. This processor

also facilitates dynamic barrier synchronizations

between PEs, whether located within the same cluster or

between various clusters. We will explain this

architecture in more detail later in section IV.

B. Opportunities

Functional integration in aviation industries (e.g.,

Integrated Modular Avionics (IMA) specifications [29],

and the growing requirements for additional

computational capacity are opening new possibilities for

innovative research works on multicore systems. As

spacecraft platforms are responsible for different

activities such as direction-finding, stability control,

data communications, air traffic control, passenger

entertainment, etc., their computational complexity

remains increasing. Hence, multicore processors can be

utilized to focus several independent tasks on an

integrated platform or to execute tasks demanding for

maximum computational efficiency. Indeed, a

combination of scenarios is also feasible.

1) Hosting various functionalities within an integrated

platform:

Integrating several tasks onto a single, secure computing

platform allow us to map each task to a predefined core.

The valuable benefits of functional integration are as

follows: (i) Power consumption and heat dissipation

limitations are driving manufacturers towards multicore

devices. The power consumption of a single multicore

platform is usually lower than that of multiple unicore

solutions. In a multicore platform, only one power

supply unit is efficient enough to fulfil the requirements

of the system’s power budget as compared to multiple

power supply units for multiple unicore systems; (ii)

lower power density directly leads to lower cooling

requirements, which is a salient feature of the aerospace

system; (iii) decreasing the number of PEs, supply units

and cooling equipment evidently reduces the SWaP

requirements of the system architecture; and (iv) this, in

line, leads to a reduced amount of fuel ingestion (i.e.

less fuel has to be lifted at flight take-off), and

eventually leads to significant economic gains.

2) Ever-growing Demand for Computing Performance:

Performance is the motivating force behind computing

technologies. Tasks with increasing computational

necessities can benefit from multicore technologies by

dividing a complicated application into independent

tasks being performed concurrently on various cores.

These performance demands could only be realized by

highly sophisticated unicore processors with increasing

demands on power supply and cooling. Regrettably,

these sophisticated unicore processors do not fulfil the

DO-254 specification [30] and hence cannot be used.

System engineers select the preferred design alternative,

a single-chip multicore containing a higher number of

less sophisticated cores, to provide such performance.

This entails extra effort to build parallelization

techniques, compilers and analysis tools for safety-

critical applications. Multicore processors can deliver

their superior performance only if an appropriate

parallelization is performed.

3) Supporting time-predictability:

Time constraints and parameters associated with the

data processing phases (i.e., acquisition, computation,

forwarding, buffering, synchronization and delivery) are

used to specify the time-critical tasks. The major

potentials anticipated from a multicore system for time-

critical computing and stated by the safety standards are

determinism, predictability and composability of the

performed computations. The graceful degradation of

timing features and maximum utilization of computing

resources are deemed other quality metrics for such

systems. In multicore environments, interactions among

tasks avert the system to be composable, predictable or

even deterministic. The timing predictability cannot be

guaranteed whenever cores contend to access common

hardware means, e.g., system buses, global clocks,

shared RAM and I/O peripherals. Owing to resource

sharing, the task assigned to one core can interfere with

the task executing on other core, albeit both tasks are

autonomous. The inter-core interference can cause not

only execution delay but can also make execution

behavior less deterministic. Examples of interference

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 350

channels include (i) peripherals, L2 caches and internal

buses shared between cores (see Figure 1); (ii) Direct

Memory Access (DMA) controller may interrupt the

communication buses asynchronously; (iii) L1 caches

may need to be preserved in a steady state by means of

cache coherency protocol, (i.e., although L1 caches

belong to different cores, they are not autonomous); and

(iv) pipelines are shared between cores for hyper

threading processors.

Figure 1 shows a quad-core architecture analogous to

NXP QorIQ T2080 [31] architecture which is

commonly used in avionics systems. In this

configuration, each PE has its own pipeline and L1

cache (L1$). It also consists of shared on-chip L2

caches (L2$). Though the cores have the multi-

threading capability, most of the aerospace systems do

not utilize this facility. Therefore, an application

assigned to a core has private access to L1$. The

common resources are L2$, Memory Controller (MC)

and NoC. Common resources are accessible by all the

cores and fine-grain hardware techniques such as

placement, fetch and replacement policies of cache

memories, define in what way they are accessed. Even

though such techniques work sound in practice, they are

extremely unpredictable and do not assure required

system behavior for safety-related applications.

Figure 1: Interference Channels in Multicore Platform

Recent multicore processors pose several issues that

have to be tackled in advance. Most of them are related

with highly consolidated system-on-chips (SoC) that

comprise many I/O devices. Many certification methods

and processes exploit only a small portion of these

resources. Hence, how can we ensure that idle resources

do not interrupt the system (e.g., “babbling idiot”

failure)? How can we ensure that idle PEs do not have

any action on the buses? Furthermore, some

performance enhancing techniques (e.g., speculations,

caching policies, memory pre-fetching techniques and

so on) cause non-deterministic characteristics of system

behavior. In an SCS this can cause may cause tasks to

violate their timing constraints resulting in malfunction

of the system and in the worst-case behavior the

potential loss of human lives or equipment. The major

problem of using multicore architectures in SCS is

ensuring the timing correctness of the system. If the

hardware and software are extremely constrained to

impose the worst-case execution behavior, then it makes

the application less efficient on the multicore platform

than on the unicore processor.

Figure 2 : Multicore architecture with cache coherent

memory.

Important issues in multicore processors are memory

hierarchies, coherency and latencies. The memory

hierarchy of a traditional multicore system with a

common memory and cache-based architecture is shown

in Figure 2. A series of caches are traversed before

accessing the common DDR memory. Even though the

L1caches are completely owned by their corresponding

cores, their data is often unpredictable and so is their

timing behavior. Hence, the concurrent access of the

cores to the same resources can cause unanticipated

interferences. The key benefit of traditional multicore

systems is the potential to run workstation and server

software with a minute or no changes/advances.

An example memory hierarchy of a multicore system

appropriate for time-critical embedded systems (e.g.,

Digital Signal Processors (DSP)) is given in Figure 3. In

this configuration, the first level of the hierarchy

consists of private SRAM with cache lockdown

features. A Large amount of data transfers is delegated

to DMA controllers, whose computational time can be

constrained more precisely than general-purpose PEs.

Interference arises in the components of the

interconnection network and the DDR memory

controller that are accessed by multiple applications.

Such systems need significant reconfiguration to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 351

accommodate the bounded storage capacity of local

memories and the usage of DMA controllers.

Figure 3: Multicore architecture with local memories

C. Challenges

As stated in the preceding section, non-intended

interactions onto a common platform can have a strong

influence on predictability and the dictated composable

behaviour of safety-oriented applications. At present,

both EASA [32] and FAA [33] enable SCS developers

to use a dual-core processor for performing a single

application. Clearly, this restricts the potential

advantage of multicore processors. To fill this gap, lots

of expertise is essential to have a complete knowledge

about all the timing behaviours of platforms to make

them appropriate for critical domains. This effort should

be shared among the hardware manufacturers, the tool

vendors and the application designers. In this section,

we discuss the major challenges that should be tackled

at the hardware as well as software level.

1) Architectural properties of the of Cores:

A significant dispute that is frequently ignored in the

context of the multicore environment is the architectural

properties of each core. As safety-oriented components

strive to satisfy the most stringent constraints, the

processors used must deliver a temporally deterministic

behaviour. This implies that cores exhibiting timing

anomalies, dynamic branch prediction, or sophisticated

caching policies make WCET analysis more complex.

Therefore, cores fabricated with such features do not

build a desirable foundation for multicore platforms in

the aerospace system. However, multicore processor

containing cores with lower complexity as compared to

general purpose high-performance computing are

classified as highly sophisticated COTS devices [32]. In

most cases, this classification makes certification

process incredible regarding cost and time.

2) Interconnection Network (Int.Net):

In a multicore system, several PEs are connected using

interconnection network such as TTEthernet protocol

[34]. The Int.Net must also be responsible for

guaranteeing predictable system behaviour. Moreover,

facilitating higher bandwidth and lower execution delay

are not efficient enough as far as no assurances on the

correctness of the safety-critical part can be given. The

specified assurances need to reflect the actual execution

behaviour as precisely as possible. Excessive assurances

will lead to higher overheads, which in turn adversely

affect the performance of the multicore systems.

3) Fault management model:

The functional safety of the system demands several

methods for enhancing reliability or at least to identify

the timing overruns. Existing multicore processors are

already fortified with ECC techniques to access an

external RAM, Flash and internal memories; however,

most of them are inappropriate for future avionics

systems because their complexity leads to further risks.

As multicore processors are designed to satisfy as many

use cases as possible, they have several configuration

registers. Error in a single configuration bit, ensuing

from a Single Event Upset (SEU), may strongly affect

the behaviour of the application. For instance, if the

configuration of the access policy to the Int.Net varies,

the timing properties of all tasks executing on the

platform will be affected since the Int.Net is not

operating correctly any longer. The timing overruns

cannot be determined by WCET analysis. In unicore

systems, faults can be detected by various redundant

subsystems with compare stages before the results leave

the system. Since unicore processors execute

applications serially and in the same sequence on

redundant components, comparing the result is quite

easy to realize. However, the multicore processor can

yield diverse results based on the possible interleaving

of concurrent workloads. An appropriate compare unit

is required to manage these results accordingly, which

increases the system complexity.

4) I/O Devices:

Generally, I/O devices can be accessed by any active

component within the system. This access can be

intentional or occur inadvertently, for example, because

of misbehaviour of a low-criticality task or a Single

Event Upset in the Int.Net. Therefore, procedures for

protecting I/O peripherals from inadvertent access and

techniques are required for controlling/ synchronizing

the envisioned accesses.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 352

5) Programming tools:

Current programming models are not adequately

flexible, reliable and scalable to be capable of tackling

the growing size and heterogeneity of the multicore

platform. Development of new programming models

for critical unicore processors already needs special

cognizance and practical experience. Besides this

knowledge, designing critical concurrent software

requires additional knowledge about what happens in a

multicore system and what can happen inadvertently.

Particularly, synchronization of workloads, the location

of code and data, updating data and the utilization of I/O

peripherals needs extra effort. In the average case,

violating timing guarantees may yield inefficient

systems; but in the worst case, it can also cause

catastrophic consequences. Recently, appropriate

synchronization mechanisms have been predominantly

studied (e.g., parMERASA project [8]). Special care has

to be taken when the multicore processor dealing with

special micro coded routines. These routines can be

complex instructions or I/O activities that execute

expedient functions such as testing a subsystem in an

efficient way, which would otherwise be impossible to

test.

6) Software analysis

Running several workloads from the same or diverse

application simultaneously raises a new query that is not

answered by conventional software testing tools: what

happens in parallel? Although running various partitions

needs strict isolation, applications need to access

peripherals frequently. If these peripherals are shared by

several applications, it must be assured that no

malfunction happens when a peripheral is locked by

another application. Perhaps more importantly, in the

case of concurrent execution, it must be assured that no

race conditions can happen and that induced

synchronization operates correctly. Furthermore,

synchronization overhead and waiting times need to be

considered during the WCET analysis.

2. Certified RTOS for Safety-Critical Embedded

Platform

a. Necessity of certified RTOS in a safety-critical

domain

Due to the familiarization of multicore

hardware/software designs and new techniques such as

virtualization and partitioning, the embedded system

designers have more design-freedom in fabricating their

systems. Since several safety-critical applications also

use an embedded RTOS, it has become inevitable that

critical subsystems with an RTOS are being designed to

follow safety standards. The RTOS schedules the tasks

of software as well as the functionalities of safety

monitors and safety functions. The real-time software

developers already provide certified RTOS (e.g.,

INTEGRITY-178B RTOS, VxWork Cert, or

SCIOPTA's RTOS) that are initially certified to the

industrial safety standard DO-178B. Since then, it is

routinely re-certified to IEC 61508 on several

compiler/processor combinations. The key benefits of

using a certified RTOS are as follows: (i) it will reduce

risk, cost and time-to-market of safety-critical products;

(ii) it will provide a safety guidebook, which gives

guidance on in what way to use the OS efficiently to

ensure safety; and (iii) it will deliver some remarkable

methods like memory protection that will make it

simple to embed safety features into application.

b. Pike OS

Isolation is a significant requirement for safety-related

applications, especially as we assimilate several tasks

with diverse criticalities in a common platform, we

would like to separate them according to their

importance levels. In a multicore platform, this isolation

is really difficult to realize since the hardware

components are not sovereign. An imperative notion

required to simplify the design and certification is a

severe and vigorous partitioning, i.e. a set of principles

applied to hardware/software resources which thwart

interactions among tasks, exactly as if each task

executes on its own virtual resources with assured

performances whatever the execution of other tasks.

Hence, we need the support of the OS to provide

architects sufficient flexibility to the system

configuration whilst coercing the architecture to enable

the certification process. PikeOS is ARINC-653

compatible OS; it delivers complete partitioning in both

time and space for several tasks executing with various

importance levels.

i. Key Principles of PikeOS:

In a multicore platform, an efficient scheduling

algorithm is required to implement not only to exploit

software budgets effectively but also to reduce the

interferences among concurrent application. These

challenges are the key enabler to SYSGOs engineers to

develop PikeOS [23]. The PikeOS is a new and

prominent para-virtualization RTOS based on

partitioning microkernel architecture for forthcoming

avionics systems. As stated earlier, the progression of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 353

embedded system from federated to integrated

architectures has led to environments where several

tasks with different confidence levels share a common

processing element (PE) or node. In order to circumvent

any unintended interferences among these tasks the

system needs to facilitate strict partition.

ARINC-653 [35] is a well-known example of

partitioned communication model dictating firm

isolation in the context of safety applications. The

ARINC-653 defines the baseline-operating environment

with strong time and space separations. It imposes time

and space constraints statically before execution of each

partition. Each separation is a distinct application with a

devoted memory region, thus providing spatial

separation. With time separations, each task is allowed

to execute only within specified time budget or partition

slices, assigned to each core. An additional OS layer

named Virtual Machine Monitor (VMM) or hypervisor

guarantees the partitioning among various separations.

VMM is a software layer (or a mixture of

hardware/software) that enables different OS’s to run on

the same processor as shown in Figure 4. The function

of the VMM is to virtualize the existing system

resources effectively. Furthermore, the VMM has to be

certified at the highest SIL.

Figure 4: ARINC-653 Partitioned environment

PikeOS provides Many Independent Levels of Security

(MILS) to embedded avionics systems, and its

separations allow the safe and secure integration of

large range of personalities of the market [23],

including guest OS, Run-Time Environments (RTE),

APIs, Native, Linux, ARINC-653, POSIX, Android,

real-time Java, and others as shown in Figure 5.

Figure 5: Architecture of PikeOS

The hypervisor model of this RTOS incorporates guests

within a virtual machine (VM) with their dedicated

memory region, computing resources and application

set. Programs integrated on one VM perform absolutely

independent of those in other machines. PikeOS has the

facility to distinct code both spatially and temporally so

system engineers have the capability to control not only

where the code is stored but also when it executes.

PikeOS and its associated software form a thin layer of

the trusted code that virtualizes the critical components

of the application to generate several isolated

separations. The VMM is responsible for handling the

physical resources of systems, and implement the spatial

and temporal partitioning of the guests. Direct access to

the native hardware is not endorsed.

ii. Hardware support for PikeOS:

Many OS, particularly those in avionics systems, still

does not directly impose any partitioning techniques due

to its excessively slow software emulation. In such

cases, it is possible to program hardware devices to

implement the required partitioning. For example, the

OS enables Memory Management Units (MMUs) to

provide access to a specified memory region, and the

hardware is responsible for implementing that. Else, an

exception is upraised and the operating system regains

control. Reasonable exploitation of hardware support

for partitioning is definitely most efficient with respect

to performance and deterministic execution.

Regrettably, most of the recent hardware does not

support that. A prime example of hardware support is

the evolving Input–Output Memory Management Unit

(IOMMU) [36] implemented to DMA-capable I/O

devices. Another example of limited support is

virtualized PCI (Peripheral Component Interconnect)

drivers [37] providing spatial isolation, however by

exploiting the same PCI bus, there still exists

interference impacts on the remaining parts of the

system.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 354

In Graphics Processing Units (GPU), we are still at the

beginning since current hardware has no facility to

reduce the processing time of shaders for, in order to

partition rendering time in the GPU. Finally, access to

peripherals can be virtualized by virtualizing software

drivers. They provide flexible configuration and

separation potentials, and for various devices, they are

sufficiently fast. PikeOS exploits this method frequently

for Ethernet devices. If hardware partitioning support

does not exist, one approach may be to evade

dependency by exploiting other partitioning resources,

e.g., if direct bus bandwidth isolation does not exist,

then the tasks may be isolated temporally so that no

interaction can befall. It is essential for an OS to deliver

the flexibility of the configuration for arranging a

system in the way the designer realizes fit.

iii. PikeOS Separation Kernel for Multicore

platforms

PikeOS is a separation micro-kernel that supports

spatial and temporal isolation, where each separation in

the system can be statically allocated to space and time

constraints, ensured by the OS at run-time. Spatial

isolation includes memory and peripheral access. This is

applied by means of the existing MMUs of the cores.

PikeOS delivers fine-grained memory management

usage for the separations in the platform. PikeOS

derives the concept of temporal isolation from ARINC

653 separation standards. A dedicated hardware

switches the control back to the OS at defined

synchronization points so that the OS can execute the

separation.

During a separation process, executing functions

achieve exclusive access to the common means. This

needs all the synchronized cores to have a similar

perception of time or synchronization with a dedicated

protocol in case of asynchronous modes. In addition to

the temporal isolation, this supports fine-grained control

about what partition runs on which core at what time.

This makes it feasible to reason about partitioning, even

in a multicore environment.

For full control of the utilization of the processor,

PikeOS provides a flexible methodology to the user who

can choose an execution model ranging from

asymmetric multi-processing to symmetric multi-

processing [23]. The Asymmetric Multi-Processing

(AMP) model is analogous to multiple unicore

environments. There is a strong tendency for more

interference channels among cores owing to the tight

coupling of the cores. In this model, various cores or set

of cores operated by various instances of an RTOS,

possibly even different processors. It is also possible

that the RTOS’s could also be different resulting in

partitioning being disseminated across various RTOSes.

In this model, execution is absolutely asynchronous

since each RTOS has distinct virtual address spaces so

the MMU synchronization is not required. Memory

spaces are only shared for dedicated regions for core

interaction.

In a Symmetric Multi-Processing (SMP) model, a single

OS controls all cores and partitioning process. The cores

are tightly coupled via resource locks and

synchronization mechanisms. The RTOS with SMP

design needs to certify that there are no interference

channels among partitions due to cross resource locking

techniques. This idea is new for certification. Critical

components of the time frame can perform in

uniprocessor mode. In contrast to AMP, symmetric

multi-processing model needs MMU synchronization,

which will have some albeit a small hit on performance.

An illustration of a resource and temporal separation in

PikeOS is given in Figure 6. Time partitions Tp_1, Tp_2

and Tp_3, are scheduled to repeat at regular intervals.

Resources partitions 1, 2, 3 and 4 are mapped to

temporal separations and then cores are assigned to

resource partitions. The lower picture demonstrates

when and on which cores the partition will then be

assigned. This way, partitioning can be realized via

flexible configuration. This mode provides a simple,

integrated platform where a single application can use

multiple cores.

Figure 6 : Example of partitioning in PikeOS

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 355

Along with partitioning, the RTOS should provide an

opportunity to refresh caches and other data structures

(e.g., Translation Lookaside Buffer (TLBs)), at every

time partition shifts. While this is typically extravagant,

it will make software performing after refresh more

predictably. In order to deal with DMA accesses that

might interrupt the system, IOMMUs are now available.

PikeOS provides support for these facilities to ensure

partitioning of such devices, too.

In this study, we have also explored the techniques to

alleviate partitioning complications. These include

exploiting hardware support to bound bus utilization for

some partitions, so as to make some assurances for other

cores. The techniques are auspicious, though actual

control of bus utilization time in hardware would be the

decisive way to recover control of partitioning a bus. In

order to certify, a safety-critical application, all the

existing approaches are valuable. Only a cautious

system design, including considerations about safety-

critical guarantees, can be realized in the way the

system needs it. This is made conceivable by flexible

configuration joined with the implementation of the

most recent hardware/software innovations for dealing

the increased risk of interference.

c. eMCOS for a safety-critical environment

The eMCOS is the first viable manycore real-time OS

for safety-critical platforms from eSOL in 2015. In an

embedded market, eSOL is recognized as the leading

vendor for RTOS, development tools and

basic/application middleware. The noteworthy product

of eSOL is the eT-Kernel RTOS, which is certified ISO

26262 and IEC 61508 at the maximum SIL. In contrast

to any existing RTOS architecture, eMCOS can make

the efficient utilization of manycore processor with tens

or hundreds of different cores since it does not rely on

any cache coherency protocol required by most

currently available RTOSes.

eMCOS employs distributed micro-kernel architecture

that is diverse from currently used RTOSes. The

microkernel is fortified with only minimal utilities and

is really compact, which enables it to run the MPPA I/O

clusters as well as CCs. A micro-kernel is implemented

in each core to provide fundamental services (e.g., inter-

core communication, thread scheduling, thread

migration, etc.,) (see Figure 7). The eMCOS for MPPA

architectures also supports OpenMP 3.0 (Open Multi-

Processing version 3). eSOL's semi-priority-based

scheduling algorithm provides timeliness guarantees for

safety-critical applications, which is always expected in

embedded systems along with the superior throughput

and scalability anticipated from multicore architectures.

eMCOS allows the application developers to follow

existing development styles since it implements the

same programming frameworks and Application

Programming Interfaces (API) like widely used RTOSes

for unicore /multicore systems.

The eMCOS’s scheduling algorithm exploits two

different schedulers that work simultaneously. One

scheduler satisfies the real-time guarantees by assigning

higher priority threads to each core. These scheduled

threads are always serviced first in order to for

guarantee the timing constraints. Another scheduler

allocates the remaining lower priority threads across all

the cores based on their priorities. Obviously, this load

distribution ability enables higher throughput.

Figure 7 : eMCOS real-time thread management

III. RESULTS AND DISCUSSION

1. Example Multicore Architecture for Safety-Critical

Domain

A. The Kalray MPPA-256 Bostan processor

The foundation of Kalray’s supercomputing on a single-

chip relies on its innovation, patented MPPA manycore

architecture. This revolutionary architecture

allows multiple cores to operate in parallel at high

performance, low power and extremely low latency. It

assimilates 288 homogeneous 32-bit/64-bit Very Long

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 356

Instruction Word (VLIW) computing nodes and 128

crypto co-processors on a die. More specifically, it

consists of 256 application cores (or PEs), used to

execute the user threads and 32 resource managers

(RMs), and privileged to execute kernel routines. The

computing nodes are disseminated across sixteen

compute clusters and four I/O clusters. Each compute

cluster comprises of 17 cores (i.e., 16 PEs + 1 RM). In

addition to this, there are four quad-core I/O clusters,

each having 4 RMs. The I/O clusters are in charge for

communications with external devices, which act as

controllers for the computing nodes. Each resource

managers: (i) uses an RTEMS (Real-Time Executive for

Multiprocessor Systems) OS; (ii) is provided with a

common 512 KB 16-banked SDRAM; (iii) has its

privileged 32 KB I-cache; and (iv) shares a 128 KB D-

cache, which assures coherency among the

computing nodes. The functions of RM include task

management, communication control and data transfers

between both external connectors (PCIe Gen3 8-lane

interfaces) and SDRAM. For this purpose, resource

managers have dedicated links to NoC interfaces. The

Kalray MPPA-256 Bostan architecture is depicted in

Figure 8.

Figure 8 : Kalray MPPA-256 Bostan processor

Architecture overview

The Kalray processor works between 400 MHz and 800

MHz and typically consumes 25W. Its maximum

floating-point performances at 600 MHz are 634

GFLOPS / 316 GFLOPS for single/double precision

correspondingly. Two memory controllers at 2133 MT/s

deliver an external memory bandwidth of 34 Gbps. This

memory hierarchy is energy-efficient and thwarts inter-

cluster interferences, except for the explicit data

transferring via NoC. The system also uses 2 PCIe

connectors, 8 Ethernet 10 Gbps interfaces and direct

access to the NoC in order to reduce processing delay.

Applications developed for this architecture commence

their execution on the I/O subsystems; consequently, it

denies computation to the CCs through the network-on-

chip interfaces. Communication with peripherals is

achieved through several interfaces like PCIe connector

and DDR3 channels.

B. Kalray software development Environments

The Kalray programming environment is composed of

two parts, one dedicated to multicore programming and

the other to manycore programming. On the I/O

subsystems, the memory is directly accessible by the

cluster cores; however, on the compute cluster, direct

memory access by the cores must be emulated by a run-

time system. One more fundamental dichotomy is that

data caches are not coherent in the CCs, whereas each

core within the I/O subsystems shares them. The

multicore programming model consists of modern

GCC/G++ compilers with OpenMP support,

multithreaded GNU debugger and an optional Eclipse

C/C++ Development Tools. A single process model

with POSIX threads and timers is provided for each CC,

limited to one thread per processing core. On the I/O

subsystems, a Linux OS with dynamic loading and

shared libraries are available, running on one of the

quad-core CPUs. In the CC, the utilization of the

OpenMP and P-Threads ensure that caches are coherent

at synchronization points.

The manycore software development environments

explore the features of the programming model in the

context of the MPPA-256 processor. A Low-Level

programming environment is provided to realize the

maximum performances or determinism of the safety-

critical applications. It also supports OS, RTEs and

middleware from 3
rd

 party software developers. The

Low-Level programming (LLP) environment virtualizes

event and trap managing for simpler use by guest OS.

Virtualization is applied by an exo-kernel type of

hypervisor, where computing resources are managed

and protected but are neither scheduled for use nor

abstracted in an OS-specific way [38]. An overview of

the LLP environment is given in Figure 9.

Figure 9 : The Kalray LLP environment

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 357

The LLP also delivers the nitty-gritty of a Software

Distributed Shared Memory (S-DSM) system. This S-

DSM provides shared memory abstractions for clusters.

It enables the MMU of each core to achieve direct

accessing of the external DDR memory, effectively

transferring the content of the private memory of each

CC into a last-level cache. The other manycore

programming environments such as a POSIX-Level

environment and an OpenCL environment utilize this.

Of late, the MPPA-256 processor is implemented in

aviation-embedded systems. This requires that the entire

system and application be certified according to the DO-

178 avionic standard and the DO-245 airborne

electronic hardware standard. Because of its clustered

architecture, the MPPA-256 also effectively satisfies the

imperatives of partitioning. The extensive roadmap

towards certified spacecraft applications executing on

this processor is based on embedding PikeOS on the I/O

subsystems to support the Kalray-supplied Linux, and

on realizing spacecraft certification for core elements of

the Low-Level programming environment.

C. An Example Ongoing Research Project

FP7 ongoing project P-SOCRATES (Parallel Software

framework for Time-critical Manycore Systems) [39] is

combining the essential expertise from High-

performance computing (HPC) and Embedded

Computing (EC) platforms to cooperatively mitigate the

complications of enabling timeliness assurances to

applications with an increasing demand for computing

performance. Thus, P-SOCRATES will allow the

implementation of manycore architecture either in HPC

or in EC systems. The main objective of P-SOCRATES

is to execute OpenMP 4 applications on I/O clusters

with offloading to the CCs, thus exporting a simple

interface for real-time programming of the MPPA

architectures.

Figure 10: P-SOCRATES integrating approach

To handle the predictability issues, this integrating

approach provides a comprehensive software solution,

able to fill the gap between application design and

physical environment by implementing efficient parallel

programming model. The concurrent software stack

integrates bin-packing techniques with scheduling

algorithms in order to achieve parallelization of tasks.

This concurrent software framework is being extended

for the use in safety-critical embedded platform. Figure

10 illustrates the software stack implemented in P-

SOCRATES. It deduces a Task Dependency Graph

(TDG) from the user application and allocates each task

to the OS’s threads statically; then these threads are

dynamically scheduled on targeted manycore

architecture [39].

Improved concurrent software solutions are being

examined, integrating innovative principles and

compiler technologies to build an extended TDG

comprising the data dependencies between tasks and

related information to address the influence of shared

resources on real-time behavior of the system. Bin

packing and task scheduling tools to choose an

appropriate core mapping techniques then utilize this

statistics. The bin-packing technique statically forms the

efficient run-time configuration, effectively allocates

tasks to OS’s threads to provide timeliness guarantees

without compromising the system performance. Then,

the task scheduling tool interprets the task-to-thread

allocation strategy into an effective thread-to-core

mapping algorithm.

II. CONCLUSION

In modern embedded platforms, multicore processors

have developed towards worldwide safety-critical

applications. In this work, we explained some of the

major issues which will decelerate our progress towards

multicores from unicore in the context of the critical

aerospace system. In summary, it is not enough for the

aviation system to have a better understanding of

concepts related to multicore processors; it is also

essential for the system manufacturers and tool vendors

to gain knowledge about critical functionalities and their

requirements for multicore processors. Therefore, many

significant efforts are presently under way or have been

made in a series of research projects. We highlight the

experience of both SYSGO and Kalray, who contributed

many of these projects, in providing complete hardware

design solutions and efficient OS level software

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 358

solutions to make multicore core systems appropriate

for safety-oriented applications. Several research efforts

are still required to mitigate the problem of certification

of SCS. So far, no complete value chain has been

recognized in the aviation electronics for multicore

processors. A large variety of research regarding this

combined effort is still need to be addressed to adopt

multicore architectures in safety-critical embedded

systems.

III. REFERENCES

[1] Valavanis, K.P., “Advances in Unmanned Aerial

Vehicles: State of the Art and the Road to

Autonomy”, Springer Publishing Company,

Incorporated, 2007

[2] Visiongain, "The Unmanned Aerial Vehicles

(UAV) Market 2011-2021: Technologies for ISR

and Counter-Insurgency," Vision gain, 2011

[3] S. Vriters, "UAV Market Exceeds Five Billion

Dollars In 2010," Space Dally, London, 2010,

[4] Media, Market Research, "U.S. Military

Unmanned Aerial Vehicles (UA V) Market

Forecast 2010-2015," Market Research Media

Ltd, 2011.

[5] K. Wong, "Survey of Regional Develoments :

Civil Applications," University of Sydney,

Sydney, 2001

[6] Durrieu, G., Faug`ere, M., Girbal, S., Gracia

P˜arez, D., Pagetti, C., and Puffitsch, W.,

“Predictable flight management system

implementation on a multicore processor”, In

Embedded Real Time Software and Systems,

ERTS ’14, 2014.

[7] Richard West, Ye Li and Eric Missimer, “A

Virtualized Separation Kernel for Mixed-

Criticality Systems”, ACM Transactions on

Computer Systems (TOCS), Vol.34(3),

September 2016, Article No. 8

[8] parMERASA (2013), “Multi-core execution of

parallelized hard real-time applications supporting

analyzability”, Available

[Online]:http://www.parmerasa.eu

[9] CERTAINTY (2013), “Certification of real time

applications designed for mixed criticality,”

Available [Online]: http://www. certainty-

project.eu.

[10] Luis Miguel Pinho, Eduardo Quiñones, Marko

Bertogna, Modena, Jorge Pereira Carlos, “P-

SOCRATES: A Parallel Software Framework for

Time-Critical Many-Core Systems” in 17th

Euromicro Conference on Digital System Design

(DSD), 2014

[11] ARTEMIS, Embedded Multi-Core systems for

Mixed Criticality applications in dynamic and

changeable real-time environments, Available

[Online]:http://www.artemis-emc2.eu

[12] European Organization for Civil Aviation

Equipment (1992), “DO-178B, Software

Consideration in Airborne Systems and

Equipment Certification. EUROCAE”, Available:

[Online] https://en.wikipedia.org/wiki/DO-178B

[13] Guan, N., Ekberg, P., Stigge, M., & Yi, W.

(2011), “Effective and efficient scheduling of

certifiable mixed-criticality sporadic task

systems”, 32nd IEEE Real-Time Systems

Symposium, pp.13 – 23. doi:

10.1109/RTSS.2011.10

[14] S. of Automotive Engineers (SAE). Arp 4754:

(aerospace recommended practice) - certification

considerations for highly integrated or complex

aircraft systems, 2010

[15] RTCA. ”do-254/ed-80 - design assurance

guidance for airborne electronic hardware”.

Technical report, RTCA, Inc, 19th April 2000

[16] RTCA. do-178b/ed-12b - software considerations

in air-borne systems and equipment certification”.

Technical report, RTCA, Inc, 1st December 1992

[17] Baruah, S.K., “Bipasa Chattopadhyay, Haohan Li,

and Insik Shin. Mixed-criticality scheduling on

multiprocessors. Real-Time Systems, 50(1):142–

177, 2014

[18] Boniol, F., “New challenges for future avionic

architectures”, In Modelling Approaches and

Algorithms for Advanced Computer Applications,

volume 488 of Studies in Computational

Intelligence, page 1. Springer, 2013

[19] John Rushby, “Partitioning for avionics

architectures: Requirements, mechanisms, and

assurance”, NASA Contractor Report CR-1999-

209347, NASA Langley Research Center, June

1999

[20] Hermann Kopetz, “An integrated architecture for

dependable embedded systems”, In Proceedings

of the International Symposium on Reliable

Distributed Systems, pages 160–161, 2004

[21] John Rushby, “Partitioning for avionics

architectures: Requirements, mechanisms, and

assurance”, NASA Contractor Report CR-1999-

https://en.wikipedia.org/wiki/DO-178B

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 359

209347, NASA Langley Research Center, June

1999.

[22] J. Nowotsch and M. Paulitsch, “Leveraging multi-

core computing architectures in avionics”, In

Dependable Computing Conference (EDCC),

2012 Ninth European, pages 132–143, May 2012

[23] R.Kaiser, “The pikeos concept history and

design”, sysgo, white paper, 2007

[24] De Dinechin, B. D., van Amstel, D., Poulhi`es,

M., and Lager, G., “Time critical computing on a

single-chip massively parallel processor”, In

Proceedings of the Conference on Design,

Automation & Test in Europe, DATE ’14, pages

97:1–97:6, 3001 Leuven, Belgium, Belgium,

2014. European Design and Automation

Association

[25] Ungerer et al., “Merasa: Multicore Execution of

Hard Real-Time Applications Supporting

Analyzability”, in IEEE Micro, vol. 30, no. 5, pp.

66-75, Sept.-Oct. 2010

[26] Nowotsch, Jan, and Michael Paulitsch,

“Leveraging multi-core computing architectures

in avionics,” Dependable Computing Conference

(EDCC), 2012 Ninth European. IEEE, 2012

[27] [http://www.windriver.com/products/hypervisor/]

[28] International Electro technical Commission, IEC

61508, "Functional safety of

electrical/electronic/programmable electronic

safety-related systems", Switzerland, 2005

[29] Watkins, C. and Walter, R. “Transitioning from

federated avionics architectures to integrated

modular avionics”, In Digital Avionics Systems

Conference, 2007. DASC’07, pp. 2.A.1–1–2.A.1–

10, Oct 2007.

[30] RTCA and EUROCAE, DO-254 / ED-80, Design

Assurance Guidance for Airborne Electronic

Hardware, 2000

[31] QorIQ T2080 and T2081 communication

processors, Available [Online]: http://cache.nxp.

com/files/32bit/doc/fact sheet/T2080FS.pdf

[32] EASA. Certification memorandum - development

assurance of airborne electronic hardware. In

Software and Complex Electronic Hardware

section, chapter 9. European Aviation Safety

Agency, 11th Aug 2011.

[33] F. Certification Authorities Software Team

(CAST). Position paper cast-32, multi-core

processors, May 2014. Available [Online]:

http://www.faa.gov/aircraft/air_cert#/design_appr

ovals/air_software/cast/ cast_papers/media/ cast-

32.pdf

[34] AS 6802. Time-Triggered Ethernet. SAE

International, 2011

[35] AEEC, 1996. Avionics Application Software

Standard Interface (ARINC-653). Airlines

Electronic Eng. Committee.

[36] S. Trujillo, A. Crespo, A. Alonso, and J. P´erez.,

“Multipartes: Multicore partitioning and

virtualization for easing the certification of mixed-

criticality systems”, Microprocessors and

Microsystems - Embedded Hardware Design,

38(8):921–932, 2014.

[37] K. Sandstrom, A. Vulgarakis, M. Lindgren, and

T. Nolte. “Virtualization technologies in

embedded real-time systems”, In Emerging

Technologies Factory Automation (ETFA), 2013

IEEE 18th Conference on, pages 1–8, Sept 2013.

[38] D.R.Engler, M.F.Kaashoek, and J.O’Toole, Jr.,

“Exokernel: An operating system architecture for

application-level resource management”, In

Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles, SOSP ’95, 1995

[39] The P-SOCRATES Consortium, P-SOCRATES

(Parallel Software Framework for Time-Critical

Many-core Systems) Available [Online]: http://p-

socrates.eu.

http://www.faa.gov/aircraft/air_cert#/design_approvals/air_software/
http://www.faa.gov/aircraft/air_cert#/design_approvals/air_software/
http://p-socrates.eu/
http://p-socrates.eu/

